

django-simpleimages

This opinionated Django utility will take the image file from one
ImageField [https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ImageField] and transform it onto
another field, when the model saves.

	Why…?
	The Alternative
	Performance Problems

	My Solution

	Configuration
	Requirements

	Usage
	Models
	Dimension Caching

	Performing Transforms Asynchronously

	Management Command

	Contributing
	New Release

	Changelog

	simpleimages Package
	callers Module

	management.commands.retransform Module

	trackers Module

	transforms Module

	utils Module

Why…?

I believe that keeping the implementation of this package as simple as
possible. When I say simple, I mean in comparison to other image
transformation packages in Django.

The Alternative

The most popular apps, such as sorl-thumbnail [https://github.com/sorl/sorl-thumbnail], generate the transformed
images in the request-response cycle, in the template or the views. That
was the images are never out of date and are not stored in the database,
which makes sense because there isn’t really anything new that should be
stored by a scaled down image. And it makes sense that it is present in
the template, because it really is a presentation detail. And it is the
easiest method, and can be implemented with a few lines of code. For
example:

{% thumbnail item.image "100x100" crop="center" as im %}

{% endthumbnail %}

Performance Problems

I ran into performance problems with this approach. Since images are
generated in the request-response cycle, caching strategies are essential
to minimize database and storage access. I then found django-imagekit [https://github.com/jdriscoll/django-imagekit],
which is much more advanced and allows a great flexibility on every bit
of the image generation process. However I still found myself
struggling to understand the exact implementation details of how and
when the images were generated. This isn’t something I should have been
worrying about, apart from the fact that some of my pages were timing
out generating hundreds of thumbnails.

My Solution

So I decided to write an implementation that anyone could understand.
django-simpleimages uses the standard
Even though is more verbose, and requires an extra database column,
storing transformed images in their own fields presents several
advantages. It allows
caching of image dimensions, using
Django’s built in solution. It also is easy to understand when the
storage backend is being accessed, because you are simply accessing a
normal ImageField [https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ImageField].

Configuration

Add simpleimages to your INSTALLED_APPS to use the
management command.

If you want to transform the images using workers, set the
SIMPLEIMAGES_TRANSFORM_CALLER to a function that will call
the transform function. It defaults to 'simpleimages.callers.default',
which transforms images synchronously. See callers for all
provided image transform callers.

The async docs section has more details on managing
image retrieval for async creation.

Requirements

	Django 1.5, 1.6, 1.7, 1.8

	Python 2.7, 3.2, 3.3, 3.4, 3.5

Usage

Models

Here is an example model that will create transformed images on save:

from django.db import models
import simpleimages.transforms
import simpleimages.trackers

class YourModel(models.Model):
 image = models.ImageField(
 upload_to='images/'
)
 thumbnail_image = models.ImageField(
 blank=True,
 null=True,
 editable=False,
 upload_to='transformed_images/thumbnails/'
)
 large_image = models.ImageField(
 blank=True,
 null=True,
 editable=False,
 upload_to='transformed_images/large/'
)

 transformed_fields = {
 'image': {
 'thumbnail_image': simpleimages.transforms.Scale(width=10),
 'large_image': simpleimages.transforms.Scale(width=200),
 }
 }

simpleimages.tracking.track_model(YourModel)

track_model() is called with the model you want to
track. When that model is saved,
perform_transformation() uses the transformed_fields
attribute of the model to determine a mapping of source to destination
and transform functions.

See transforms for all the provided transformations.

Dimension Caching

I would recommend using
height_field [https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ImageField.height_field] and
width_field [https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ImageField.width_field] to save the image
dimensions. Otherwise (at least with
storages.backends.s3boto.S3BotoStorage), the file will have
to be retrieved once to get url [https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.fields.files.FieldFile.url]
and another time to get the dimensions:

import os

from django.db import models

import simpleimages.transforms
import simpleimages.trackers

def image_path_function(subfolder, instance, filename):
 return os.path.join(
 instance.content_name,
 'photos',
 subfolder,
 filename
)

def original_image_path_function(instance, filename):
 return image_path_function('original', instance, filename)

def thumbnail_image_path_function(instance, filename):
 return image_path_function('thumbnail', instance, filename)

def large_image_path_function(instance, filename):
 return image_path_function('large', instance, filename)

class Photo(models.Model):
 image = models.ImageField(
 upload_to=original_image_path_function,
 max_length=1000,

)
 thumbnail_image = models.ImageField(
 blank=True,
 null=True,
 editable=False,
 upload_to=thumbnail_image_path_function,
 height_field='thumbnail_image_height',
 width_field='thumbnail_image_width',
 max_length=1000
)
 large_image = models.ImageField(
 blank=True,
 null=True,
 editable=False,
 upload_to=large_image_path_function,
 height_field='large_image_height',
 width_field='large_image_width',
 max_length=1000
)
 # cached dimension fields
 thumbnail_image_height = models.PositiveIntegerField(
 null=True,
 blank=True,
 editable=False,
)
 thumbnail_image_width = models.PositiveIntegerField(
 null=True,
 blank=True,
 editable=False,
)
 large_image_height = models.PositiveIntegerField(
 null=True,
 blank=True,
 editable=False,
)
 large_image_width = models.PositiveIntegerField(
 null=True,
 blank=True,
 editable=False,
)

 transformed_fields = {
 'image': {
 'thumbnail_image': simpleimages.transforms.Scale(height=600),
 'large_image': simpleimages.transforms.Scale(height=800),
 }
 }

simpleimages.trackers.track_model(Photo)

Performing Transforms Asynchronously

By default all transformations are performed when the model is saved.
If you want to instead perform the transformations asynchronously,
for the obvious performance reasons, you by setting
SIMPLEIMAGES_TRANSFORM_CALLER. Set this to the dotted
path to any function that will take the transform function as its
first argument and the arguments to call it with as subsequent
arguments and keyword arguments. This format was based around
django-rq [https://github.com/ui/django-rq#putting-jobs-in-the-queue]. To perform all transforms through django-rq set
SIMPLEIMAGES_TRANSFORM_CALLER='django_rq.enqueue'.

There is also built in support for celery, just set
SIMPLEIMAGES_TRANSFORM_CALLER='simpleimages.callers.celery'

Then you have to account for the fact that sometimes the transformed
images won’t be available in time to render them on the page. If you
want to fall back to the source image, if the transformed image isn’t
rendered yet, use something like this:

import os

from django.db import models

import simpleimages.transforms
import simpleimages.trackers

def image_path_function(subfolder):
 return lambda instance, filename: os.path.join(
 instance.content_name,
 'photos',
 subfolder,
 filename
)

def original_image_path_function(instance, filename):
 image_path_function('original')(instance, filename)

def thumbnail_image_path_function(instance, filename):
 image_path_function('thumbnail')(instance, filename)

def large_image_path_function(instance, filename):
 image_path_function('large')(instance, filename)

class Photo(models.Model):
 image = models.ImageField(
 upload_to=original_image_path_function,
 max_length=1000,

)
 thumbnail_image = models.ImageField(
 blank=True,
 null=True,
 editable=False,
 upload_to=thumbnail_image_path_function,
 height_field='thumbnail_image_height',
 width_field='thumbnail_image_width',
 max_length=1000
)
 large_image = models.ImageField(
 blank=True,
 null=True,
 editable=False,
 upload_to=large_image_path_function,
 height_field='large_image_height',
 width_field='large_image_width',
 max_length=1000
)
 # cached dimension fields
 thumbnail_image_height = models.PositiveIntegerField(
 null=True,
 blank=True,
 editable=False,
)
 thumbnail_image_width = models.PositiveIntegerField(
 null=True,
 blank=True,
 editable=False,
)
 large_image_height = models.PositiveIntegerField(
 null=True,
 blank=True,
 editable=False,
)
 large_image_width = models.PositiveIntegerField(
 null=True,
 blank=True,
 editable=False,
)

 @property
 def safe_thumbnail_image(self):
 return self.thumbnail_image or self.image

 @property
 def safe_large_image(self):
 return self.large_image or self.image

 transformed_fields = {
 'image': {
 'thumbnail_image': simpleimages.transforms.Scale(height=600),
 'large_image': simpleimages.transforms.Scale(height=800),
 }
 }

simpleimages.trackers.track_model(Photo)

Then access the transformed images with instance.safe_thumbnail_image
instead.

Management Command

Since the images are only transformed on the save of the model, if you
change the transform function, the instances will not be updated until
you resave them. If you want to retransform all the images in a model or
app use management.commands.retransform

Contributing

If you find issues or would like to see a feature suppored, head over to
the issues section: [https://github.com/saulshanabrook/django-simpleimages/issues] and report it.

To contribute code in any form, fork the github repository: [https://github.com/saulshanabrook/django-simpleimages] and clone it locally.
Create a new branch for your feature:

git commit -b feature/whatever-you-like

Add proper docstrings to any changed or added code.

Then make sure all the tests past (and write new ones for any new features).

To run the tests:

docker-compose up -d db redis
docker-compose run tests

Compile the documentation and check if it looks right:

docker-compose run tests make docs-html
open docs/build/index.html

Then push the finished feature to github and open a pull request form the branch.

New Release

To create a new release:

	Add changes to docs/source/changelog.rst, using Releases [http://releases.readthedocs.org/en/latest/concepts.html] formatting

	Change version in setup.py

	Change version in docs/source/conf.py

	python setup.py sdist upload

	python setup.py bdist_wheel

	git tag x.x.x

	Push git tag and commit

	Add release to github tag, with changes and releasion name.

Changelog

Next 1.x feature release

	[Feature]: Added support for Django 1.9.

	[Support] #26 [https://github.com/saulshanabrook/django-simpleimages/issues/26]: Removed lambdas in docs for model.

Next 0.x feature release

	[Feature]: Reimplement progressive and optimize support.

	[Feature]: Added option to not overwrite image.

	[Support]: Increased transform debug logging.

1.3.4 2017.06.06

	[Bug]: Save color profiles with images

1.3.3 2015.12.26

	[Bug]: Fixed Celery task defination.

1.3.2 2015.12.22

	[Bug]: Removed extranious print debugging.

1.3.0 2015.11.08

	[Feature]: Added support for Python 3.5 and Django 1.7, 1.8.

	[Feature]: Added support for Celery.

	[Feature]: Remove support for PQ (it isn’t being maintained).

	[Support]: Changed to use Docker for development.

1.2.0 2014.04.07

	[Feature] #16 [https://github.com/saulshanabrook/django-simpleimages/issues/16]: Support Django 1.7 (experimental).

	[Bug] #15 [https://github.com/saulshanabrook/django-simpleimages/issues/15]: Make compatible with height_field and width_field.

	[Support] #13 [https://github.com/saulshanabrook/django-simpleimages/issues/13]: Add testing for 3rd party transformation support.

	[Support] #19 [https://github.com/saulshanabrook/django-simpleimages/issues/19]: Change to use Releases for changelog.

1.1.1 2014.01.27

	[Bug]: Fix height/width order. Before they were reversed and broken.

1.1.0 2014.01.14

	[Feature]: Deletion of destination field when no source exists or transformation fails.

	[Feature]: Require Pillow.

	[Support]: Fixed spelling for caller setting.

	[Support]: Display progress for management command.

1.0.5 2013.09.04

	[Bug]: Check if destination field exists before deleting.

1.0.2 2013.08.31

	[Bug]: Fixed adding management command directory

1.0.1 2013.08.31

	[Bug]: Added management directory to packages so that Django finds command

1.0.0 2013.08.23

	[Feature]: Added option to django-rq

	[Support]: Use py.test for testing.

	[Support]: Added Sphinx docs.

0.2.7 2013.06.06

	[Bug]: Save only filename and not whole path for transformed images.

0.2.6 2013.06.06

	[Bug]: Use .count() for management command instead of len()

0.2.5 2013.06.04

	[Bug]: Fixed retransform with no fields.

0.2.3 2013.06.04

	[Bug]: Add all packages so that Django finds management command

0.2.2 2013.06.04

	[Bug]: Zip safe on setup.py so Django finds management command.

0.2.0 2013.05.29

	[Feature]: Support uploading of non-image files.

	[Feature]: Save image with higher quality.

	[Feature]: Save image as progressive.

	[Feature] #20 [https://github.com/saulshanabrook/django-simpleimages/issues/20]: Don’t save image with optimize either, because encoutner error.

	[Support]: Fixed Readme formatting.

	[Support]: Added requirement for at least Django 1.5.

	[Support]: Added instructions to add to INSTALLED_APPS.

	[Support]: Reasons why to use library added to readme.

0.1.9 2013.05.29

	[Bug]: Don’t save image as progressive, because encounters error.

0.1.8 2013.05.29

	[Bug]: Convert image to JPEG colorspace.

0.1.7 2013.05.29

	[Bug]: Addressed force_update error.

	[Bug]: Transform post save.

0.1.6 2013.05.29

	[Bug]: Moved error handling to transform function.

0.1.5 2013.04.18

	[Bug]: Make sure image exists before trying to delete it.

0.1.0 2013.03.19

	[Feature]: Basic functionality.

simpleimages Package

	callers Module

	management.commands.retransform Module

	trackers Module

	transforms Module

	utils Module

callers Module

	
simpleimages.callers.celery(function, *args, **kwargs)

	Calls function asynchronously by creating a pickling it and
calling it in a task.

	
simpleimages.callers.default(function, *args, **kwargs)

	Calls function with any passed in args and ``kwargs.

management.commands.retransform Module

	
simpleimages.management.commands.retransform.parse_model_specifier(specifier)

	Parses a string that specifies either a model or a field.
The string should look like app.model.[field].

>>> print parse_model_specifier('tests.TestModel')
(<class 'tests.models.TestModel'>, None)
>>> print parse_model_specifier('tests.TestModel.image')
(<class 'tests.models.TestModel'>, 'image')

	Returns

	model and (optionally) field name

	Return type

	tuple of Model [https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model] and str or None

trackers Module

	
simpleimages.trackers.track_model(model)

	Perform designated transformations on model, when it saves.

Calls perform_transformation()
on every model saves using
django.db.models.signals.post_save [https://django.readthedocs.io/en/latest/ref/signals.html#django.db.models.signals.post_save].

It uses the update_fields kwarg to tell what fields it should
transform.

transforms Module

	
class simpleimages.transforms.BasePILTransform

	Bases: object

Base transform object that provides helper methods to transform
django.core.files.images.ImageFile [https://django.readthedocs.io/en/latest/ref/files/file.html#django.core.files.images.ImageFile] using
PIL.

Must subclass and override transform_pil_image().

	
__call__(original_django_file)

	Returns the transformed version of PIL.Image.Image

Uses transform_pil_image() to transform
the PIL.Image.Image.

	Parameters

	original_django_file (django.core.files.images.ImageFile [https://django.readthedocs.io/en/latest/ref/files/file.html#django.core.files.images.ImageFile]) – source file

	Returns

	transformed file

	Return type

	django.core.files.File [https://django.readthedocs.io/en/latest/ref/files/file.html#django.core.files.File]

	
django_file_to_pil_image(django_file)

	Converts a the file returned by
django.db.models.fields.ImageField to a PIL image.

	Parameters

	django_file (django.db.models.fields.files.FieldFile [https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.fields.files.FieldFile]) – django file

	Return type

	PIL.Image.Image

	
pil_image_to_django_file(pil_image)

	Gets a PIL image ready to be able to be saved using
django.db.models.fields.files.FieldFile.save() [https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.fields.files.FieldFile.save]

It converts the mode first to RGB or L, so that it can
then save it as a JPEG. It will save it as a progressive
JPEG with a quality of IMAGE_QUALITY.

	Parameters

	pil_image (PIL.Image.Image) – original image

	Returns

	transformed image

	Return type

	django.core.files.base.ContentFile [https://django.readthedocs.io/en/latest/ref/files/file.html#django.core.files.base.ContentFile]

	
transform_pil_image(pil_image)

	Returns the transformed version of the PIL.Image.Image
Do some logic on PIL.Image.Image.

Must subclass method to provide transformation logic.

	Parameters

	pil_image (PIL.Image.Image) – original image

	Returns

	transformed image

	Return type

	PIL.Image.Image

	
class simpleimages.transforms.Scale(width=None, height=None)

	Bases: simpleimages.transforms.BasePILTransform

Scales down an image to max height and/or width. If the original
image is smaller than both/either specified dimensions than it will
be left unchanged.

	
__init__(width=None, height=None)

	Initialize this class with a max height and/or width (in pixels).

	Parameters

	
	height (int or float) – max height of scaled image

	width (int or float) – max width of scaled image

	
transform_pil_image(pil_image)

	Uses PIL.Image.Image.transform() to scale
down the image.

Based on this stackoverflow discussions [http://stackoverflow.com/a/940368/907060], uses
PIL.Image.ANTIALIAS

utils Module

	
simpleimages.utils.perform_transformation(instance, field_names_to_transform=None)

	Transforms a model based on the fields specified in the
transformed_fields attribute. This should map source image
field names to dictionaries mapping destination field name to
their transformations. For instance:

{
 'image': {
 'thumbnail': scale(width=10),
 }
}

If field_names_to_transform is None, then it will transform
all fields. Otherwise it will only transform
from those fields specified in field_names_to_transform.

	Parameters

	
	instance (instance of django.db.models.Model [https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model]) – model instance to perform transformations on

	field_names_to_transform (iterable of strings or None) – field names on model to perform transformations on

	
simpleimages.utils.transform_field(instance, source_field_name, destination_field_name, transformation)

	Does an image transformation on a instance. It will get the image
from the source field attribute of the instnace, then call
the transformation function with that instance, and finally
save that transformed image into the destination field attribute
of the instance.

Note

If the source field is blank or the transformation returns
a false value then the destination field image will be deleted, if it
exists.

Warning

When the model instance is saved with the new transformed image, it uses
the update_fields argument for
save() [https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.save], to tell the model to only update
the destination field and, if set in the destination field, the
height_field [https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ImageField.height_field] and
width_field [https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ImageField.width_field]. This means that
if the saving code for the model sets any other fields, in the saving
field process, it will not save those fields to the database. This would
only happen if you introduce custom logic to the saving process of
destination field, like the dimension fields do, that updates another field
on that module. In that case, when the model is saved for the
transformation, that other field will not be saved to the database.

	Parameters

	
	instance (instance of django.db.models.Model [https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model]) – model instance to perform transformations on

	source_field_name (string) – field name on model to find source image

	destination_field_name (string) – field name on model save transformed image to

	transformation (function) – function, such as scale(), that takes an image files and returns a transformed image

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 simpleimages	

 	
 	
 simpleimages.callers	

 	
 	
 simpleimages.management.commands.retransform	

 	
 	
 simpleimages.trackers	

 	
 	
 simpleimages.transforms	

 	
 	
 simpleimages.utils	

Index

 _
 | B
 | C
 | D
 | P
 | S
 | T

_

 	
 	__call__() (simpleimages.transforms.BasePILTransform method)

 	
 	__init__() (simpleimages.transforms.Scale method)

B

 	
 	BasePILTransform (class in simpleimages.transforms)

C

 	
 	celery() (in module simpleimages.callers)

D

 	
 	default() (in module simpleimages.callers)

 	
 	django_file_to_pil_image() (simpleimages.transforms.BasePILTransform method)

P

 	
 	parse_model_specifier() (in module simpleimages.management.commands.retransform)

 	
 	perform_transformation() (in module simpleimages.utils)

 	pil_image_to_django_file() (simpleimages.transforms.BasePILTransform method)

S

 	
 	Scale (class in simpleimages.transforms)

 	simpleimages (module)

 	simpleimages.callers (module)

 	
 	simpleimages.management.commands.retransform (module)

 	simpleimages.trackers (module)

 	simpleimages.transforms (module)

 	simpleimages.utils (module)

T

 	
 	track_model() (in module simpleimages.trackers)

 	transform_field() (in module simpleimages.utils)

 	
 	transform_pil_image() (simpleimages.transforms.BasePILTransform method)

 	(simpleimages.transforms.Scale method)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 django-simpleimages

 		
 Why…?

 		
 The Alternative

 		
 Performance Problems

 		
 My Solution

 		
 Configuration

 		
 Requirements

 		
 Usage

 		
 Models

 		
 Dimension Caching

 		
 Performing Transforms Asynchronously

 		
 Management Command

 		
 Contributing

 		
 New Release

 		
 Changelog

 		
 simpleimages Package

 		
 callers Module

 		
 management.commands.retransform Module

 		
 trackers Module

 		
 transforms Module

 		
 utils Module

_static/up.png

